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Abstract: The COVID-19 pandemic raised global concerns about the shortage of ventilators
and revealed the challenges of rapidly scaling up production to meet emergency needs.
In response, numerous teams worldwide attempted to develop emergency and simple
mechanical ventilators. Among these, the CoroVent ventilator was developed to meet
the urgent need for ventilatory support in the Czech Republic. The aim of this study
was to describe the innovative and simple design of the CoroVent emergency ventilator,
evaluate its compliance with international safety and performance standards, verify its
reliability under simulated clinical conditions, and demonstrate its suitability for use in
crisis scenarios. CoroVent was designed with a focus on the clinical needs of patients with
COVID-19 respiratory failure and to ensure safe ventilation while maintaining a simplified
design. It features volume-controlled, pressure-limited mandatory ventilation and supports
key adjustable parameters such as tidal volume, respiratory rate, inspiratory-to-expiratory
time ratio, inspired oxygen fraction, and positive end-expiratory pressure (PEEP). The
ventilator incorporates robust safety mechanisms, including alarms and a safety relief valve,
to protect against excessive airway pressures. Results confirmed the ability to maintain
consistent tidal volumes, stable PEEP, and precise pressure limitation over extended periods
of use. The results showed that CoroVent met the essential international standards for
accuracy, including those set by the UK Medicines and Healthcare products Regulatory
Agency, U.S. Food and Drug Administration, and ISO 80601-2-12. Although production
of these ventilators was stopped in 2021 as the Czech Republic managed the crisis and
shortage of ventilators, the results validate their reliability as emergency ventilators and
indicate their potential to support critical care needs in crisis situations.

Keywords: emergency ventilator; COVID-19; inspiratory flow generation

1. Introduction

The COVID-19 pandemic showed that intensive care units in many countries were not
prepared to deal with large numbers of patients requiring ventilatory support during such
a mass casualty incident [1,2]. The huge increase in demand for mechanical ventilators at
the onset of the pandemic led many teams around the world to respond with the idea of
developing a mechanical ventilator that could be easily and quickly manufactured [3]. From
the beginning, it was evident that many individuals were eager to contribute; however, a
comprehensive understanding of the principles of mechanical ventilation was often lacking.
Numerous innovative concepts emerged, but they were not suitable for standard clinical
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practice, as their use could potentially cause more harm than benefit to patients [4]. The
Medtronic company even released documentation under a permissive license for their
ventilator Puritan Bennett 560 [5], but a potential problem was the lack of parts on the
market as countries banned the export of critical equipment and pneumatic components [6].
Some research teams have attempted to increase ventilator capacity by using a single
ventilator to support multiple patients [7-10]. Many teams have tried to improve manual
resuscitators (bag—valve-masks, sometimes referred to as Ambu-bags) [11-14], based on
the so-called MIT design [15].

Out of hundreds of teams of experts and enthusiasts, only a few dozen succeeded
in designing a ventilator that at least met the minimum safety and efficacy requirements
of the U.S. Food and Drug Administration (FDA), World Health Organization (WHO), or
UK Medicines and Healthcare products Regulatory Agency (MHRA) [16-18]. Eighty-five
ventilators gradually received Emergency Use Authorization (EUA) from the FDA [16], with
the time evolution of the number of approved ventilators shown in Figure 1. A significant
number of these devices were previously developed ventilators used in clinical practice with
only minor modifications to software, hardware, or documentation. Eleven of the eighty-five
devices were only approved as emergency resuscitators. Less than ten Emergency Lung
Ventilators, which were newly designed and manufactured during the COVID-19 pandemic,
received EUA. Examples include the Milano mechanical ventilator [19], authorized on
1 May 2020, or the O2U ventilator Model 100 [20], authorized on 22 March 2021.
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Figure 1. Time evolution of the number of authorized ventilators by EUA FDA during COVID-19
pandemic [16]. No ventilator has been authorized since 20 April 2022.

One of these ventilators was also the CoroVent (MICo Medical s.r.0., Trebic, Czech
Republic), authorized on 21 August 2020. The CoroVent ventilators were distributed to
27 Czech hospitals for free during the COVID-19 pandemics, but the production was stopped
in 2021 when the Czech Republic had handled the crisis and the shortage of ventilators.

The aim of this study was to describe the CoroVent ventilator and to demonstrate that
even such a simple ventilator in principle that is easy to manufacture can meet the require-
ments for accuracy and safety according to international standards and clinical demands.

2. Materials and Methods

The ventilator has been designed with a focus on the clinical needs of patients with res-
piratory insufficiency or failure due to COVID-19, particularly those with acute respiratory
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distress syndrome (ARDS). The number of ventilation modes and features implemented has
been minimized to essential functions, simplifying the design while supporting effective
gas exchange for the patient. For these reasons, our design focused on the development of a
single mode of mandatory ventilation without the support of assisted modes of ventilation
synchronized with the patient’s respiratory effort. The ventilator has been engineered to
adhere to the principles of protective lung ventilation [21], minimizing the risk of further
lung damage during use. Although simplified in design, the ventilator is equipped with
a robust electronic control system, safety mechanisms, and precise monitoring features
to ensure reliable operation in critical care settings, to meet reasonable risk levels, and to
comply with relevant safety standards, including international standards [22-25].

Testing protocols were developed to document compliance with international stan-
dards and MHRA requirements [18]. The laboratory testing was conducted on ventilators
produced during the COVID-19 pandemic, using specialized equipment for testing me-
chanical ventilators as described below.

2.1. Design Overview

The ventilator provides volume-controlled pressure-limited mandatory mechanical
ventilation with the following adjustable parameters and their guaranteed ranges: tidal
volume (VT) 200-800 mL, respiratory rate (RR) 5-45 breaths per minute, inspiratory-to-
expiratory time ratio (I:E) 1:1-1:4, fraction of oxygen in inspiratory gas (FiO,) 21-100%, pos-
itive end-expiratory pressure (PEEP) 0-30 cmH;O, and peak inspiratory pressure reached
during inspiratory phase (Pmax) 15-45 cmH,O.

The ventilator consists of the CoroVent unit, gas connections, an expiratory valve,
and a patient circuit equipped with a pneumotachograph flow sensor CoroQuant [26].
The CoroVent unit includes an inspiratory branch, an expiratory branch, and pressure
regulators with air and oxygen pressure sensors, as shown in the diagram in Figure 2.
Removable and disposable accessories, such as the expiratory valve and CoroQuant, were
specifically designed to ensure proper and safe operation. A standard patient circuit with a
heat and moisture exchanger and filter was recommended for optimal functionality.

Inspiratory Branch

RS2
RS1

H
M
E

CoroQuant

P 1

. Gas Connections | . Expiratory Branch i i Patient Circuit

. CoroVent Unit

Figure 2. Diagram of individual functional components of the pneumatic part of the CoroVent
ventilator. Medical air quick coupling (RS1), medical oxygen quick coupling (RS2), air pressure
regulator (RV1), oxygen pressure regulator (RV2), air pressure sensor (P1), oxygen pressure sensor (P2),
ON/OFF valve in air branch (DV1), ON/OFF valve in oxygen branch (DV2), acoustic filters (F1, F2),
analog pressure gauge (M1), safety relief valve (BV), inspiratory coupling with the port for connection
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of the patient’s circuit (IS), expiratory valve (EV), absolute and differential pressure sensors measuring
pressure and flow at the patients airway opening (P3, P4), pressure regulator for PEEP (RV3), pressure
regulator for Plim (RV4), analog pressure gauge for indication of Plim setting (M2), compliance for M2
stabilization (C3), three-way valve (TV), and bleed valve (S3). Modified from the user’s manual [27].

2.1.1. Inspiratory Branch

The gas connections (RS1, RS2) are used to connect the ventilator to the hospital’s
compressed air and oxygen supply, which typically operates at 4-5 bar. If CoroVent is used
with gas cylinders, a standard medical pressure regulator must be installed on the cylinder.
The air supply begins with a medical quick connector attached to a hose, which delivers air
to the ventilator. The oxygen supply follows the same principle, using a dedicated oxygen
quick connector. All materials in the oxygen circuit are oxygen-compatible. Inside the
ventilator, the supply hoses are connected to pressure regulators (RV1, RV2), which reduce
the hospital pipeline pressure to the ventilator’s operating pressure of 200 & 2 kPa at a flow
rate of 50 L min~! for both air and oxygen.

After the pressure regulators, sensors (P1, P2) are placed in both branches to monitor
the operating pressure. Based on the sensor data, the following alarms are provided: low
air or oxygen pressure, large difference between the operating pressures of the two gases,
and malfunction of one or both ON/OFF valves.

Inspiratory flow generation is then provided by two fast ON/OFF valves (DV1, DV2)
connected directly after the pressure regulators. Both ON/OFF valves use pulse width
modulation (PWM) with constant switching frequency of 10 Hz. By setting the duty cycle
(D) and the ON/OFF ratio of the air and oxygen valves, it is possible to generate the desired
inspiratory flow rate while controlling the oxygen fraction in the ventilatory gas mixture, as
depicted in Figure 3A-C. The sum of the ON/OFF valve duty cycles (Dsum) must not exceed
100% so that FiO, can be set over the entire range from 21% to 100% even at maximum
flow. In this ventilator, a constant inspiratory flow was selected. With proper timing, the
ON/OFF valves also control the respiratory rate and the inspiratory-to-expiratory time
ratio and generate the inspiratory hold.

FiQ, = 40%

FiO,=21%

Figure 3. Electrical pulses and set duty cycles (D) on air ON/OFF valve (D,;;) and oxygen ON/OFF
valve (Do) at (A) maximum inspiratory flow (Dsum = 100%) and 1:1 ratio between the valves
(FiOy = 60%), (B) half inspiratory flow (Dsum = 50%) and 3:1 ratio between the valves (FiO, = 40%),
(C) maximum inspiratory flow (Dsum = 100%) with only air ON/OFF valve in operation (FiO, = 21%).

As shown in Figure 4A, a series of short electrical pulses at the ON/OFF valve with
D = 50% creates high pressure oscillations forming an inspiratory flow. Acoustic filters
(F1, F2) are then used to reduce these oscillations caused by the opening and closing of the
ON/OFF valves. As shown in Figure 2, each acoustic filter consists of two throttle valves
and a compliance between them [28]. The result is a smoothed pressure waveform behind
the acoustic filter (Figure 4B).
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Figure 4. (A) Series of short electrical pulses at the ON/OFF valve creating high pressure oscillations
and (B) smoothed pressure waveform behind the acoustic filter measured in the patient circuit.

The air and oxygen branches are then joined (IS) and interconnected to a port for
connection of the patient circuit. The IS coupling also interconnects these pneumatic circuits
with a safety relief valve (BV) which is used to protect the patient from airway pressures
exceeding 6 kPa (approximately 60 cmH;O) according to ISO standard [22]. The drawing
of the safety relief valve design and its cross-section are shown in Figure 5A. An analog
pressure gauge M1 indicates the pressure at the inlet to the patient circuit, but the precise
Paw pressure is displayed on the ventilator screen and measured by the CoroQuant. The
M1 pressure gauge provides the ventilator operator with information about the pressure
throughout the entire respiratory cycle and is only an additional modality.

(A)

Figure 5. Illustration and cross-section of (A) safety relief valve and (B) expiratory valve.

2.1.2. Expiratory Branch

The expiratory valve acts as a pneumatically controlled pressure-relief valve, limiting
maximum inspiratory pressure (Plim) during inspiration and regulating positive end-
expiratory pressure (PEEP) during expiration. The expiratory valve is designed so that the
piston area on the control pressure side is ten times smaller than the diaphragm area on the
patient circuit side. This 10:1 ratio ensures that the expiratory valve generates a pressure
10 times lower than the control pressure, allowing the system to operate at higher control
pressures and therefore higher precision due to the wider setting range of the pressure
regulator. The drawing and cross-section of the expiratory valve are shown in Figure 5B.

Using a three-way valve, the expiratory valve is alternately supplied with two different
pressures generated by the RV3 and RV4 pressure regulators. The three-way valve switches
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electronically between inspiratory and expiratory phases. Both pressure regulators receive
an internal operating pressure of 200 & 2 kPa, reduced from the hospital pipeline pressure.
The user can adjust Plim and PEEP using two control knobs on the front panel of the
ventilator. PEEP is controlled by adjusting RV3 and Plim is controlled by RV4. A compliance
(CB) filters out short-term pressure drops from RV4, allowing the ventilator operator to
easily set the Plim pressure based on the pressure measured by the analog pressure gauge
(M2). In addition, to ensure proper operation of the expiratory valve, a bleed valve (S3) is
added to the circuit to quickly depressurize the system when the three-way valve changes
from inspiration to expiration (from higher to lower pressure).

2.2. Control System, Safety, and Monitoring of the Ventilator

The ventilator operates using a programmable logic controller (PLC) CP6606 (Beckhoff,
Verl, Germany) powered by an ARM Cortex™-A8 processor running real-time operating
system Windows Embedded Compact 7 (Microsoft Corporation, Redmont, WA, USA).
The ventilator control firmware was developed within the TwinCAT 3.1 programming
environment (version 3.1, Beckhoff, Verl, Germany), utilizing Microsoft Visual Studio as the
integrated development interface. The firmware architecture incorporates two independent
threads: a primary thread, designated as high-priority, responsible for managing inspiratory
and expiratory valves, processing sensor data, and evaluating alarm conditions; and a
secondary thread, operating at a lower priority, which serves as the graphical user interface
and facilitates bidirectional communication between the primary thread and the user. The
graphical user interface displays measured parameters and active alarms and provides
functionality for user parameter adjustment and ventilator operation.

The respiratory phases are hard-controlled. Ventilation is managed without sensor
feedback. This means that all phases are rigidly timed according to the current CoroVent
settings, as determined by the respiratory therapist. Any adjustment to the respiratory
settings initiates a recalculation of timings of all valves. Sensor data are currently limited to
providing ventilation information to the respiratory therapist and managing alarms as the
ventilator does not support synchronized ventilation modes.

During ventilation, inspiratory and expiratory tidal volumes (VTi and VTe), PEEP,
peak inspiratory pressure reached during inspiratory phase (Pmax), plateau pressure
(Pplat), the ratio of inspiratory phase duration to the total time of the respiratory cycle
(Ti/T), and RR are displayed. Ventilation parameters are set using a touchscreen (glove
compatible) and two rotary knobs on the front panel: one for PEEP and the other for Plim.
All parameters shown in green in Figure 6A are parameters set by the user. All parameters
marked in white on the touchscreen are parameters measured by a specially designed
pneumotachograph flow sensor CoroQuant [26]. The volume and pressure measured by
CoroQuant at the airway opening are sensed by a differential pressure sensor (MPXV7002,
NXP, Einthoven, The Netherlands) and an absolute pressure sensor (MPXV4006DP, NXP,
Einthoven, The Netherlands).

The ventilator includes a basic alarm system per ISO 80601-2-12 [22] and EN ISO 60601-1-
8 [23], with audible and visual signals. A single alarm level is implemented. In addition, the
ventilator, its touchscreen, labels, and software use established respiratory care terminology.

Distinct from many emergency ventilators developed during the COVID-19 pandemic,
the CoroVent incorporates the full suite of safety features and functionalities expected of
a standard Intensive Care Unit (ICU) ventilator. These features have been independently
verified by the Electrotechnical Testing Institute in the Czech Republic (test report no.
020857-01/01, issued 21 April 2020), confirming its compliance with essential performance
standards. Testing included assessments of mechanical resistance and safety, electromag-
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device use and within scope of ingress protection of IP21.
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Figure 6. (A) Parameters set (in green) and measured (in white) with CoroQuant are continuously
displayed on the CoroVent touchscreen. (B) CoroQuant illustrative drawings.

Four key safety principles protect against excessive airway pressure. These protective
measures are arranged in order of detection and the severity of any unwanted pressure
increase in the patient’s circuit. Software-based features include a user-adjustable maximum
pressure alarm threshold that can be set up to 45 cmH,0O and an automatic response that
initiates expiration and triggers an alarm if pressure exceeds 55 cmH,O for 150 ms or longer.
The hardware protections provide an extra layer of safety. The user can manually set the
maximum achievable pressure during ventilation (Plim) between 15 and 45 cmH,0, and a
safety relief valve serves as the final safety mechanism if all else fails.

The patient’s airway pressure is measured by two independent systems. An electronic
system is connected to the PLC controlling the ventilator and to an analog manometer
located on the front panel of the device. Two sensors measure the inlet oxygen and air
pressures and allow the ventilator to respond with an alarm condition to a gas delivery
problem. Power protection is provided by a capacitive UPS (UBC10.241, PULS, Munich,
Germany) to safely bridge possible short-term power failures for a minimum of 30 min.

2.3. Testing

The ventilator was subjected to a series of laboratory tests similar to the studies
by Knorr et al. [29] or Rebelo et al. [30], based mainly on the requirements of the FDA
EUA [16], MHRA [18], and ISO 80601-2-12 [22]. The testing methodology was based on
standardized, reproducible lung models composed of a thermocompensated rigid test lung
and resistive elements. These simplified representations of the respiratory system were
deemed sufficient to verify the ventilator’s functionality and safety in accordance with
the applicable regulatory requirements. In this article, we focused on the most clinically
relevant ones, such as performance stability test, volume accuracy, volume monitoring,
pressure safety limitation, or PEEP stability. A picture of the ventilators during the testing
is provided in Supplementary Materials Figure S1.

First, we tested the performance stability of the ventilation for 24 h under unfavorable
conditions (combination of low compliance and high flow resistance of the test lung). The
compliance of the thermocompensated test lung was set to 10 mL cmH,O~! and the linear
resistance to 50 cmH,O s L. Ventilation was set to VT = 375 mL (maximum adjustable VT
without alarm triggering expiration), PEEP = 5 cmH,0O, RR =20 min !, and LE = 1:2. Paw
and Flow waveforms and delivered tidal volume were recorded with the Fluke Biomedical
VT900A gas flow analyzer (Fluke Biomedical LLC, Everett, WA, USA) at the beginning
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and end of the test period. Additionally, a battery runtime test was performed for the
same setting.

Next, the accuracy of tidal volumes delivered by the ventilator, PEEP stability, and
volume monitoring were tested. Ventilation was set to PEEP = 5 cmH,O, RR = 20 min~?,
and I'E = 1:2. The thermocompensated test lung was set to a compliance of 40 mL cmH,O~!
and a linear resistance to 5 cmH,O s L~!. Nine different FiO, settings were used for four
VT settings ranging from 225 to 675 mL, covering the representative volume range of the
ventilator. Each of the 36 different settings lasted 30 s (11 breaths). Reference tidal volumes
were calculated based on the experimentally measured compliance of the lung model

(40.0 + 0.1 mL cmH,0™ 1), according to the ISO standard [31]:
VTi = C -(Pmax — PEEP) (1)

where VTi is the calculated inspiratory tidal volume, C is the compliance of the test lung,
PEEP is the positive end-expiratory pressure and Pmax is the peak inspiratory pressure.
The difference between PEEP and Pmax was measured by the VT900A gas flow analyzer.

A scatter plot was constructed to assess the relationship between the reference VTi
and the set VT. The data were fitted with a linear regression line using the least squares
method, and the corresponding function was determined. Additionally, the limits required
by the ISO standard [22] were included in the plot.

For each tidal volume setting and variable FiO;, a corresponding value of PEEP was
recorded over a 20 min period and a graph of PEEP variation over time was generated.
Means and standard deviations (SDs) were calculated for each tidal volume setting.

To assess the accuracy of tidal volume monitoring of the CoroVent ventilator, VTi
measured by the CoroQuant was compared with reference VTi obtained by the VT900A gas
flow analyzer. Agreement between CoroVent and the reference was evaluated using Bland-
Altman analysis, a standard method for assessing bias and scatter between two different
measurement techniques. The 95% limits of agreement were determined by adding and
subtracting 1.96 standard deviations from the mean bias, providing an estimate of the
expected differences between simultaneously measured tidal volumes.

Finally, the pressure limitation (Plim) achieved by the preset inspiratory pressure
limit on the expiratory valve was assessed using a test lung with a compliance of
20 mL cmH,0~! and a resistance of 5 cmH,O s L~!. Ventilator settings were initially
configured to RR =20 min~!, L.E = 1:2, FiO, = 60%, VT = 375 mL, and PEEP = 0 cmH,O.
The Plim was set to 30 cmH,O. PEEP was then repeatedly manually increased in increments
of 2 ecmH;0, ranging from 0 to 20 cmH,O. Paw, minute ventilation (MV), and VTi were
measured using the VI900A gas flow analyzer. Paw and its pressure limitation through-
out the entire respiratory cycle were recorded for each PEEP adjustment, along with the
corresponding MV and VTi values.

3. Results

The presented Paw and Flow waveforms (Figure 7) indicate no change in the per-
formance of the CoroVent ventilator after 24 h of continuous ventilation under unfavor-
able conditions. The mean measured VTi at the beginning of the 24 h test period was
380.8 = 5.6 mL, and at the end of the test period, it was 382.0 £ 4.1 mL, demonstrating con-
sistent ventilator performance over time. In a separate battery runtime test, the ventilator
operated for 126 &+ 8 min.
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Figure 7. (A) Paw waveforms and (B) Flow waveforms recorded at the beginning of the 24 h test
period (blue) and at the end of the 24 h test period (red) under unfavorable conditions. The waveforms
are intentionally shifted in time by approximately 50 ms to allow the waveforms to be compared with
each other.

The measured VTi by independent reference demonstrates a strong correlation with the
set VT, exhibiting near-perfect trendline dependence (Figure 8). Furthermore, all measured
VTi values fall within the required accuracy defined by the ISO standard [22].
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Figure 8. Reference VTi versus set VT for four VT settings ranging from 225 to 675 mL and variable
FiO, at PEEP =5 cmH,0, RR = 20 min 1, and I:E = 1:2. The blue dotted line represents the determined
trendline and the black solid line represents the perfect trendline. The black dotted lines represent the
maximum acceptable deviation from the set tidal volume value required by international standard
1SO 80601-2-12:2020 for critical care ventilators [22].

Figure 9 indicates an excellent stability of PEEP across different VT settings over
the 20 min period. The measured PEEP values were as follows: 4.96 & 0.25 cmH,O for
VT =225mlL, 4.90 £ 0.24 cmH,O for VT =375 mL, 5.01 & 0.21 cmH,0 for VT =525 mL,
and 5.04 + 0.21 cmH,O for VT = 675 mL (mean + SD).
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Figure 9. PEEP recorded over a 20 min period for VT settings ranging from 225 to 675 mL and
variable FiO,.

A comparison of measured VTi values between the CoroQuant of the CoroVent ven-
tilator and the independent reference V900A gas flow analyzer is presented in Figure 10.
The results indicate that CoroVent consistently measured VTi 7.6-9.0 mL lower than the
reference, depending on the set VT. Additionally, as the VT increases, the variability in VTi
differences also increased. Lower average VTi values were observed at a preset FiO, of 21%
across all VT settings.
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Figure 10. Bland-Altman plot of differences in VTi measurements between CoroVent and the
reference Fluke Biomedical VT900A gas flow analyzer (Fluke Biomedical LLC, Everett, WA, USA).
The differences are plotted against the mean of the VTi values obtained for each set VT.

Figure 11 illustrates the effect of increasing PEEP on Paw, MV, and VTi when the Plim
was set to 30 cmH,O. As shown in Figure 114, inspiratory pressure started to be limited as
PEEP was gradually increased during respiratory cycles. The corresponding reductions
in MV and VTi, dependent on the PEEP setting, are presented in Figure 11B,C. Under the
given ventilation setting and test lung configuration, pressure limitation became evident at
PEEP > 10 cmH,0O. When PEEP was increased to 20 cmH,0O, MV decreased from 7.5 L/min
to4 L/min.
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Figure 11. (A) Paw and its pressure limitation during the whole respiratory cycle for eleven different
PEEP settings. (B) The dependance of measured MV on different PEEP settings during pressure
limitation. (C) The dependance of measured inspiratory tidal volume on different PEEP settings
during pressure limitation.

4. Discussion

The results of our testing showed that the CoroVent ventilator provides stable, safe,
and accurate ventilatory support. A key advantage of CoroVent is its simple design,
which facilitates rapid production while maintaining essential features for patient safety.
Given the specific COVID-19 progression associated with induced ARDS and urgent
development timeline, a single ventilation mode suitable for this etiology was selected.
By focusing on volume-controlled, pressure-limited mandatory ventilation, the design
minimizes complexity without compromising clinical efficacy. The ventilator incorporates
multiple layers of safety, including software-controlled pressure limits, hardware-adjustable
maximum pressure settings, and a mechanical safety relief valve, all of which act as
protective barriers to minimize ventilator-induced lung injury.

The performance stability test showed no significant deviation in Paw and Flow
waveforms and VTi over a 24 h period, even under unfavorable conditions. This indicates
that the ventilator maintains consistent function over extended use. The ability to operate
for over two hours on battery power, well above the ISO-required minimum of 30 min [22],
demonstrates robust performance under power failure conditions, which is critical for
clinical readiness in emergency and mobile settings. This aligns with the importance
of incorporating reliable control strategies to address potential operational failures in
emergency biomedical systems [32]. High accuracy of VT delivery when compared to an
independent reference suggests that the ventilator can support effective gas exchange while
minimizing the risks associated with hypoventilation or hyperventilation. Additionally,
PEEP stability was maintained across different VT settings, further validating the reliability
of the system in providing consistent PEEP to prevent alveolar collapse and improve
oxygenation. The CoroQuant pneumotachograph flow sensor, specifically designed for
CoroVent, with its processing algorithm and electronics, demonstrated accurate monitoring
of VTi within acceptable limits when compared to the reference measurements. Accurate
monitoring is essential for safe and effective mechanical ventilation, allowing clinicians to
adjust settings based on real-time patient needs.

Some of the inspiratory branch characteristics, such as the dependence of measured
FiO, on set FiOy, the relationship between measured VTi and set FiO,, and the interaction
between delivered VTi and maximum pressure relative to respiratory system compliance and
resistance were tested previously during the design of the inspiratory flow generation [28].
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The shortage of commonly available flow sensors during the COVID-19 pandemic
led to the decision to design a custom flow sensor, CoroQuant. The initial design and
optimization of the CoroQuant was carried out using computational fluid dynamics (CFD)
simulation in COMSOL Multiphysics (version 5.4.0.225, COMSOL, Inc., Burlington, MA,
USA). The first sensor prototypes were manufactured and tested using 3D printing tech-
nology. During the optimization, several positions and shapes of the resistance element
within the sensor body were tested to improve the performance of the sensor. This process
included testing using common CFD simulation methods [33-35]. The final sensor design
was chosen based on extensive experimentation with various resistance element shapes
and configurations. A metal mold was then created for plastic injection molding, ensuring
reproducible and consistent sensor properties. The design and measurement results were
described in the study by Bis et al. [26]. In designing the CoroQuant flow sensor, emphasis
was placed on ensuring that the resulting design would not cause an excessive increase in
dead space. The final flow sensor’s dead space is comparable to that of flow sensors used
in respiratory care, such as the D-Lite (GE Healthcare, Chicago, IL, USA).

The CoroVent ventilator uses CoroQuant to measure flow based on the commonly
used differential pressure measurement. However, the internal resistance element of the
CoroQuant sensor has a unique shape, resulting in distinct pressure—flow characteristics.
To ensure future compatibility with commercial flow sensors, such as the D-Lite (GE
Healthcare, Chicago, IL, USA), the ventilator’s software allows modification of the “slope”
and “exp” coefficients via the service menu. These parameters define the bidirectional
pressure—flow characteristics and enable adjustment of the flow calculation algorithm based
on the measured pressure difference.

The simplicity of the ventilator design is underlined by the unique solution of gen-
erating inspiratory flow and gas mixing by two fast electronically controlled ON/OFF
valves. Standard ICU ventilators typically use proportional valves with mixing chambers
or turbines with feedback control to generate inspiratory flow. However, the testing and
design of such ventilators is time consuming and often requires specially designed medical
components which were not commercially available during the COVID-19 pandemic situa-
tion. An important advantage of this unique solution is also its easily adaptable scalability.
The fast ON/OFF valves are controlled by a digital (PWM) signal, providing a simple yet
highly flexible control method. This design allows the ventilator to easily adapt to different
patient populations, ranging from neonates to adults and large animals in veterinary care,
by simply replacing the ON/OFF valves with models suited to the required flow rates. The
core control algorithm does not need to be changed.

Sterilization and biocompatibility were also considered, particularly for components
directly exposed to the gas mixture entering the patient’s airways. The expiratory valve
and CoroQuant were sterilized before use, and all relevant components were manufactured
using biocompatible materials, ensuring patient safety.

The simple design required the omission of certain standard features available in
advanced ICU ventilators, such as patient-triggered ventilation, real-time oxygen con-
centration monitoring, sophisticated ventilation modes, or integrated waveform analysis.
However, in line with the initial design plan, CoroVent was only intended to increase
the potential capacity of ventilator-dependent patients, not to fully replace standard ICU
ventilators. Once the patient’s condition improved to the point where they could breathe
spontaneously, they were transitioned to another ventilator to allow for weaning. In the
case of FiO, monitoring, the inspiratory branch design assured precisely controlled gas mix-
ing, making additional measurement unnecessary. If there was a risk of incorrect oxygen
delivery in the ventilation mixture, the alarm was triggered by a malfunction of one of the
ON/OFF valves. In addition, the device relied on a hospital air and oxygen supply, which
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was not always readily available in all settings, particularly low-resource settings or field
hospitals. Future iterations could explore the implementation of additional functionalities;
however, some of these would highly complicate the possible rapid mass production.

Despite these limitations, the CoroVent ventilator provided an effective and reliable
solution for emergency scenarios. The successful use of CoroVent ventilators in Czech
hospitals during the COVID-19 pandemic demonstrated the practical utility of such devices
in mitigating ventilator shortages. In addition, the results of this study support the potential
for simple yet effective ventilator designs to play a critical role in crisis response.

5. Conclusions

The CoroVent ventilator was developed in response to the urgent global need for
ventilators at the onset of the COVID-19 pandemic. Our study showed that despite its
simple design, the CoroVent meets essential safety and performance standards, making it a
viable solution for emergency scenarios where standard ICU ventilators are scarce or not
readily available.
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