Authors: Kristyna Koldova, Ales Rara, Martin Muller, Tomas Tyll, Karel Roubik
Citation
Koldova, K.; Rara, A.; Muller, M.; Tyll, T.; Roubik, K. Cranial Electrode Belt Position Improves Diagnostic Possibilities of Electrical Impedance Tomography during Laparoscopic Surgery with Capnoperitoneum. Sensors 2023, 23, 8644. https://doi.org/10.3390/s23208644
Fulltext in PDF & fulltext download
Published in Sensors
Download fulltext in PDF here.
The complete data set can be downloaded here.
Abstract
Laparoscopic surgery with capnoperitoneum brings many advantages to patients, but also emphasizes the negative impact of anesthesia and mechanical ventilation on the lungs. Even though many studies use electrical impedance tomography (EIT) for lung monitoring during these surgeries, it is not clear what the best position of the electrode belt on the patient’s thorax is, considering the cranial shift of the diaphragm. We monitored 16 patients undergoing a laparoscopic surgery with capnoperitoneum using EIT with two independent electrode belts at different tomographic levels: in the standard position of the 4th–6th intercostal space, as recommended by the manufacturer, and in a more cranial position at the level of the axilla. Functional residual capacity (FRC) was measured, and a recruitment maneuver was performed at the end of the procedure by raising the positive end-expiratory pressure (PEEP) by 5 cmH2O. The results based on the spectral analysis of the EIT signal show that the ventilation-related impedance changes are not detectable by the belt in the standard position. In general, the cranial belt position might be more suitable for the lung monitoring during the capnoperitoneum since the ventilation signal remains dominant in the obtained impedance waveform. FRC was significantly decreased by the capnoperitoneum and remained lower also after desufflation.
References
- Özdemir-van Brunschot, D.M.D.; van Laarhoven, K.C.J.M.H.; Scheffer, G.J.; Pouwels, S.; Wever, K.E.; Warlé, M.C. What is the evidence for the use of low-pressure pneumoperitoneum? A systematic review. Surg. Endosc. 2015, 30, 2049–2065.
- Atkinson, T.M.; Giraud, G.D.; Togioka, B.M.; Jones, D.B.; Cigarroa, J.E. Cardiovascular and Ventilatory Consequences of Laparoscopic Surgery. Circulation 2017, 135, 700–710.
- Buzkova, K.; Rara, A.; Muller, M.; Roubik, K.; Tyll, T. Ultrasound detection of diaphragm position in the region for lung monitoring by electrical impedance tomography during laparoscopy. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech Repub. 2018, 162, 43–46.
- Andersson, L.E.; Maath, M.; Thorne, A.; Aspelin, P.; Odeberg-Wernerman, S. Effect of Carbon Dioxide Pneumoperitoneum on Development of Atelectasis during Anaesthesia, Examined by Spiral Computed Tomography. Anesthesiology 2005, 102, 293–299.
- Grabowski, J.E.; Talamini, M.A. Physiological Effects of Pneumoperitoneum. J. Gastrointest. Surg. 2009, 13, 1009–1016.
- Hasukic, S.; Mesic, D. Postoperative pulmonary changes after laparoscopic cholecystectomy. Med. Arh. 2001, 55, 91–93.
- Bikker, I.G.; Preis, C.; Egal, M.; Bakker, J.; Gommers, D. Electrical impedance tomography measured at two thoracic levels can visualize the ventilation distribution changes at the bedside during a decremental positive end-expiratory lung pressure trial. Crit. Care 2011, 15, R193.
- Karsten, J.; Luepschen, H.; Grossherr, M.; Bruch, H.P.; Leonhardt, S. Effect of PEEP on regional ventilation during laparoscopic surgery monitored by electrical impedance tomography. Acta Anesthesiol. Scand. 2011, 55, 160–163.
- Erlandsson, K.; Odenstedt, H.; Lundin, S.; Stenqvist, O. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anesthesiol. Scand. 2006, 50, 833–839.
- Pereira, S.M.; Tucci, M.R.; Morais, C.C.A.; Simões, C.M.; Tonelotto, B.F.F.; Pompeo, M.S.; Kay, F.U.; Pelosi, P.; Vieira, J.E.; Amato, M.B.P. Individual Positive End-expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis. Anesthesiology 2018, 129, 1070–1081.
- Bordes, J.; Mazzeo, C.; Gourtobe, P.; Cungi, P.J.; Antonini, F.; Bourgoin, S.; Kaiser, E. Impact of Extraperitoneal Dioxyde Carbon Insufflation on Respiratory Function in Anesthetized Adults: A Preliminary Study Using Electrical Impedance Tomography and Wash-out/Wash-in Technic. Anesth. Pain Med. 2015, 5, e22845. [CrossRef] [PubMed]
- Jung, K.; Kim, S.; Kim, B.J.; Park, M. Comparison of Positive End-Expiratory Pressure versus Tidal Volume-Induced VentilatorDriven Alveolar Recruitment Maneuver in Robotic Prostatectomy: A Randomized Controlled Study. J. Clin. Med. 2021, 10, 3921.
- He, X.; Jiang, J.; Liu, Y.; Xu, H.; Zhou, S.; Yang, S.; Shi, X.; Yuan, H. Electrical Impedance Tomography-guided PEEP Titration in Patients Undergoing Laparoscopic Abdominal Surgery. Medicine 2016, 95, e3306.
- Teschner, E.; Imhoff, M.; Leonhardt, S. Electrical Impedance Tomography: The Realization of Regional Ventilation Monitoring, 2nd ed.; Dräger Medical GmbH: Lübeck, Germany, 2015.
- Instructions for Use PulmoVista 500, Electrical Impedance Tomograph Software 1.2n, 1st ed.; Drägerwerk AG & Co. KGaA: Lübeck, Germany, 2017.
- Karsten, J.; Stueber, T.; Voigt, N.; Teschner, E.; Heinze, H. Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: A prospective observational study. Crit. Care 2016, 20, 3.
- IEC 60601-1; Medical Electrical Equipment. 3.2. ed. International Electrotechnical Commission: London, UK, 2020.
- Roubik, K.; Sobota, V.; Laviola, M. Selection of the Baseline Frame for Evaluation of Electrical Impedance Tomography of the Lungs. In Proceedings of the 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), Sliema, Malta, 17 August 2015; pp. 293–297.
- Matsunaga, A.; Ohse, K.; Kakihana, Y.; Masuda, M.; Ikoma, K.; Kanmura, Y. Effect of pneumoperitoneum on functional residual capacity. Adv. Exp. Med. Biol. 2012, 737, 239–243.
- Midgley, S.; Tolley, D.A. Anaesthesia for Laparoscopic Surgery in Urology. EAU-EBU Update Ser. 2006, 4, 241–245.
- Schaefer, M.S.; Wania, V.; Bastin, B.; Schmalz, U.; Kienbaum, P.; Beiderlinden, M.; Treschan, T.A. Electrical impedance tomography during major open upper abdominal surgery: A pilot-study. BMC Anesthesiol. 2014, 14, 51.
- Stankiewicz-Rudnicki, M.; Gaszynski, W.; Gaszynski, T. Assessment of Ventilation Distribution during Laparoscopic Bariatric Surgery: An Electrical Impedance Tomography Study. Biomed. Res. Int. 2016, 2016, 7423162.
- Gitas, G.; Hanker, L.; Rody, A.; Ackermann, J.; Alkatout, I. Robotic surgery in gynecology: Is the future already here? Minim. Invasive Ther. Allied Technol. 2022, 31, 815–824.
Sensors 2023, 23, 8644 14 of 14. - Rodríguez-Sanjuán, J.C.; Gómez-Ruiz, M.; Trugeda-Carrera, S.; Manuel-Palazuelos, C.; López-Useros, A.; Gómez-Fleitas, M. Laparoscopic and robot-assisted laparoscopic digestive surgery: Present and future directions. World J. Gastroenterol. 2016, 22, 1975–2004.
- Zahid, A.; Ayyan, M.; Farooq, M.; Cheema, H.A.; Shahid, A.; Naeem, F.; Ilyas, M.A.; Sohail, S. Robotic surgery in comparison to
the open and laparoscopic approaches in the field of urology: A systematic review. J. Robot. Surg. 2023, 17, 11–29.