Citation

Ort V, Roubik K. Electrical Impedance Tomography Can Be Used to Quantify Lung Hyperinflation during HFOV: The Pilot Study in Pigs. Diagnostics. 2022; 12(9):2081. https://doi.org/10.3390/diagnostics12092081

Fulltext in PDF & fulltext download

Published in Diagnostics.

Download fulltext in PDF here: Electrical-Impedance-Tomography-Can-Be-Used-to-Quantify-Lung-Hyperinflation-during-HFOV-The-Pilot-Study-in-Pigs.pdf

Abstract

Dynamic hyperinflation is reported as a potential risk during high-frequency oscillatory ventilation (HFOV), and its existence has been documented both by physical models and by CT. The aim of this study is to determine the suitability of electrical impendence tomography (EIT) for the measurement of dynamic lung hyperinflation and hypoinflation during HFOV. Eleven healthy pigs were anaesthetized and ventilated using HFOV. The difference between the airway pressure at the airway opening and alveolar space was measured by EIT and esophageal balloons at three mean airway pressures (12, 18 and 24 cm H2O) and two inspiratory to expiratory time ratios (1:1, 1:2). The I:E ratio was the primary parameter associated with differences between airway and alveolar pressures. All animals showed hyperinflation at a 1:1 ratio (median 1.9 cm H2O) and hypoinflation at a 1:2 (median –4.0 cm H2O) as measured by EIT. EIT measurements had a linear correlation to esophageal balloon measurements (r2 = –0.915, p = 0.0085). EIT measurements were slightly higher than that of the esophageal balloon transducer with the mean difference of 0.57 cm H2O. Presence of a hyperinflation or hypoinflation was also confirmed independently by chest X-ray. We found that dynamic hyperinflation developed during HFOV may be detected and characterized noninvasively by EIT.

References

  1. Ranieri, V.; Rubenfeld, G.; Thompson, B.; Ferguson, N.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [PubMed]
  2. Gattinoni, L.; Pesenti, A. The concept of “baby lung”. Intensive Care Med. 2005, 31, 776–784. [Google Scholar] [CrossRef] [PubMed]
  3. Froese, A. High-frequency oscillatory ventilation for adult respiratory distress syndrome. Crit. Care Med. 1997, 25, 906–908. [Google Scholar] [CrossRef] [PubMed]
  4. Imai, Y.; Nakaqawa, S.; Ito, Y.; Kawano, T.; Slutsky, A.; Miyasaka, K. Comparison of lung protection strategies using conventional and high-frequency oscillatory ventilation. J. Appl. Physiol. 2001, 91, 1836–1844. [Google Scholar] [CrossRef] [PubMed]
  5. Yoder, B.; Siler-Khodr, T.; Winter, V.; Coalson, J. High-frequency Oscillatory Ventilation. Am. J. Respir. Crit. Care Med. 2000, 162, 1867–1876. [Google Scholar] [CrossRef]
  6. Simon, B.; Weinmann, G.; Mitzner, W. Mean airway pressure and alveolar pressure during high-frequency ventilation. J. Appl. Physiol. 1984, 57, 1069–1078. [Google Scholar] [CrossRef]
  7. Easley, R.; Lancaster, C.; Fuld, M.; Custer, J.; Hager, D.; Kaczka, D.; Simon, B. Total and regional lung volume changes during high-frequency oscillatory ventilation (HFOV) of the normal lung. Respir. Physiol. 2009, 165, 54–60. [Google Scholar]
  8. Gerstmann, D.; Fouke, J.; Winter, D.; Taylor, A.; deLemos, R. Proximal, Tracheal, and Alveolar Pressures during High-Frequency Oscillatory Ventilation in a Normal Rabbit Model. Pediatric Res. 1990, 28, 367–373. [Google Scholar] [CrossRef]
  9. Kimball, W.; Leith, D.; Robins, A. Dynamic Hyperinflation and Ventilator Dependence in Chronic Obstructive Pulmonary Disease. Am. Rev. Respir. Dis. 1982, 126, 991–995. [Google Scholar]
  10. Pepe, P.; Marini, J. Occult Positive End-Expiratory Pressure in Mechanically Ventilated Patients with Air-Flow Obstruction—The Auto-PEEP Effect. Am. Rev. Respir. Dis. 1982, 126, 166–170. [Google Scholar]
  11. Bergman, N. Intrapulmonary Gas Trapping during Mechanical Ventilation at Rapid Frequencies. Anesthesiology 1972, 37, 626–633. [Google Scholar] [CrossRef] [PubMed]
  12. Blanch, L.; Bernabé, F. Measurement of air trapping, intrinsic positive end-expiratory pressure, and dynamic hyperinflation in mechanically ventilated patients. Respir. Care 2005, 50, 110–123. [Google Scholar] [PubMed]
  13. Solway, J.; Rossing, T.; Saari, A.; Drazen, J. Expiratory flow limitation and dynamic pulmonary hyperinflation during high-frequency ventilation. J. Appl. Physiol. 1986, 60, 2071–2078. [Google Scholar] [CrossRef] [PubMed]
  14. Allen, J.; Franz, I., III; Fredberg, J. Heterogeneity of mean alveolar pressure during high-frequency oscillations. J. Appl. Physiol. 1987, 62, 223–228. [Google Scholar] [CrossRef] [PubMed]
  15. Pillow, J.; Neil, H.; Wilkinson, M.; Ramsden, C. Effect of I/E ratio on mean alveolar pressure during high-frequency oscillatory ventilation. J. Appl. Physiol. 1999, 87, 407–414. [Google Scholar] [CrossRef]
  16. Milic-Emili, J.; Robatto, F.; Bates, J. Respiratoy Mechanics in Anaesthesia. Br. J. Anaesth. 1990, 65, 4–12. [Google Scholar] [CrossRef]
  17. Adler, A.; Shinozuka, N.; Berthiaume, Y.; Gardo, R.; Bates, J. Electrical impedance tomography can monitor dynamic hyperinflation in dogs. J. Appl. Physiol. 1998, 84, 726–732. [Google Scholar] [CrossRef]
  18. Leonhardt, S.; Lachmann, B. Electrical impedance tomography: The holy grail of ventilation and perfusion monitoring? Intensive Care Med. 2012, 38, 1917–1929. [Google Scholar] [CrossRef]
  19. Putensen, C.; Hentze, B.; Muenster, S.; Muders, T. Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. J. Clin. Med. 2019, 8, 1176. [Google Scholar] [CrossRef]
  20. Goffi, A.; Ferguson, N. High-frequency oscillatory ventilation for early acute respiratory distress syndrome in adults. Curr. Opin. Crit. Care 2014, 20, 77–85. [Google Scholar] [CrossRef]
  21. Sobota, V.; Müller, M.; Roubík, K. Intravenous administration of normal saline may be misinterpreted as a change of end-expiratory lung volume when using electrical impedance tomography. Sci. Rep. 2019, 9, 5775. [Google Scholar] [CrossRef] [PubMed]
  22. Otáhal, M.; Mlček, M.; Vítková, I.; Kittnar, O. A Novel Experimental Model of Acute Respiratory Distress Syndrome in Pig. Physiol. Res. 2016, 65, S643–S651. [Google Scholar] [CrossRef] [PubMed]
  23. Roubík, K. Measuring and evaluating system designed for high frequency oscillatory ventilation monitoring. Biomed. Eng.-Biomed. Tech. 2014, 59, S979. [Google Scholar]
  24. Roubík, K.; Ráfl, J.; van Heerde, M.; Markhorst, D. Design and Control of a Demand Flow System Assuring Spontaneous Breathing of a Patient Connected to an HFO Ventilator. IEEE Trans. Biomed. Eng. 2011, 58, 3225–3233. [Google Scholar] [CrossRef]
  25. Meyers, M.; Rodrigues, N.; Ari, A. High-frequency oscillatory ventilation: A narrative review. Can. J. Respir. Ther. 2019, 55, 40–46. [Google Scholar] [CrossRef] [PubMed]
  26. Pachl, J.; Roubik, K.; Waldauf, P.; Fric, M.; Zabrodsky, V. Normocapnic High-Frequency Oscillatory Ventilation Affects Differently Extrapulmonary and Pulmonary froms of Acute Respiratory Distress Syndrome in Adults. Physiol. Res. 2006, 55, 15–24. [Google Scholar] [CrossRef] [PubMed]
  27. Pillow, J. High-frequency oscillatory ventilation: Mechanisms of gas exchange and lung mechanics. Crit. Care Med. 2005, 33, S135–S141. [Google Scholar] [CrossRef] [PubMed]
  28. Rožánek, M.; Horáková, Z.; Čadek, O.; Kučera, M.; Roubík, K. Damping of the dynamic pressure amplitude in the ventilatory circuit during high-frequency oscillatory ventilation. Biomed. Eng. Biomed. Tech. 2012, 57, 53–56. [Google Scholar] [CrossRef]
  29. Young, D.; Lamb, S.; Shah, S.; MacKenzie, I.; Tunnicliffe, W.; Lall, R.; Rowan, K.; Cuthbertson, B. High-Frequency Oscillation for Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2013, 368, 806–813. [Google Scholar] [CrossRef]
  30. Ferguson, N.; Cook, D.; Guyatt, G.; Mehta, S.; Hand, L.; Austin, P.; Zhou, Q.; Matte, A.; Walter, S.; Lamontagne, F.; et al. High-Frequency Oscillation in Early Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2013, 368, 795–805. [Google Scholar] [CrossRef]