Authors: Jan Matejka, Martin Rozanek, Jakub Rafl, Petr Kudrna, Karel Roubik


Matejka, J.; Rozanek, M.; Rafl, J.; Kudrna, P.; Roubik, K. In Vitro Estimation of Relative Compliance during High-Frequency Oscillatory Ventilation. Appl. Sci. 2021, 11, 899.

Fulltext in PDF & fulltext download

Published in Applied Sciences

Download fulltext in PDF here: In-Vitro-Estimation-of-Relative-Compliance-during-High-Frequency-Oscillatory-Ventilation.pdf


High-frequency oscillatory ventilation (HFOV), which uses a small tidal volume and a high respiratory rate, is considered a type of protective lung ventilation that can be beneficial for certain patients. A disadvantage of HFOV is its limited monitoring of lung mechanics, which complicates its settings and optimal adjustment. Recent studies have shown that respiratory system reactance (Xrs) could be a promising parameter in the evaluation of respiratory system mechanics in HFOV. The aim of this study was to verify in vitro that a change in respiratory system mechanics during HFOV can be monitored by evaluating Xrs. We built an experimental system consisting of a 3100B high-frequency oscillatory ventilator, a physical model of the respiratory system with constant compliance, and a system for pressure and flow measurements. During the experiment, models of different constant compliance were connected to HFOV, and Xrs was derived from the impedance of the physical model that was calculated from the spectral density of airway opening pressure and spectral cross-power density of gas flow and airway opening pressure. The calculated Xrs changed with the change of compliance of the physical model of the respiratory system. This method enabled monitoring of the trend in the respiratory system compliance during HFOV, and has the potential to optimize the mean pressure setting in HFOV in clinical practice.


  1. Meade, M.O.; Young, D.; Hanna, S.; Zhou, Q.; Bachman, T.E.; Bollen, C.; Slutsky, A.S.; Lamb, S.E.; Adhikari, N.K.; Mentzelopoulos, S.D.; et al. Severity of Hypoxemia and Effect of High-Frequency Oscillatory Ventilation in Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2017, 196, 727–733.
  2. Sud, S.; Sud, M.; Friedrich, J.O.; Meade, M.O.; Ferguson, N.D.; Wunsch, H.; Adhikari, N.K. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): Systematic review and meta-analysis. BMJ 2010, 340, c2327, doi:10.1136/bmj.c2327.
  3. Sklar, M.C.; Fan, E.; Goligher, E.C. High-Frequency Oscillatory Ventilation in Adults With ARDS: Past, Present, and Future. Chest 2017, 152, 1306–1317, doi:10.1016/j.chest.2017.06.025.
  4. Ng, J.; Ferguson, N.D. High-frequency oscillatory ventilation: Still a role? Opin. Crit. Care 2017, 23, 175–179, doi:10.1097/MCC.0000000000000387.
  5. Goligher, E.C.; Munshi, L.; Adhikari, N.K.; Meade, M.O.; Hodgson, C.L.; Wunsch, H.; Uleryk, E.; Gajic, O.; Amato, M.P.; Ferguson, N.D.; et al. High-Frequency Oscillation for Adult Patients with Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis. Am. Thorac. Soc. 2017, 14, S289–S296, doi:10.1513/AnnalsATS.201704-341OT.
  6. Wong, J.J.; Liu, S.; Dang, H.; Anantasit, N.; Phan, P.H.; Phumeetham, S.; Qian, S.; Ong, J.S.; Gan, C.S.; Chor, Y.K.; et al. The impact of high frequency oscillatory ventilation on mortality in paediatric acute respiratory distress syndrome. Care 2020, 24, 31, doi:10.1186/s13054-020-2741-x.
  7. Angriman, F.; Ferreyro, B.L.; Donaldson, L.; Cuthbertson, B.H.; Ferguson, N.D.; Bollen, C.W.; Bachman, T.E.; Lamontagne, F.; Adhikari, N.K. The harm of high-frequency oscillatory ventilation (HFOV) in ARDS is not related to a high baseline risk of acute cor pulmonale or short-term changes in hemodynamics. Intensive Care Med. 2020, 46, 132–134, doi:1007/s00134-019-05806-8.
  8. Ning, B.; Liang, L.; Lyu, Y.; Yu, Y.; Li, B. The effect of high-frequency oscillatory ventilation or airway pressure release ventilation on children with acute respiratory distress syndrome as a rescue therapy. Pediatr. 2020, 9, 213–220, doi:10.21037/tp-19-178.
  9. Ferguson, N.D.; Cook, D.J.; Guyatt, G.H.; Mehta, S.; Hand, L.; Austin, P.; Zhou, Q.; Matte, A.; Walter, S.D.; Lamontagne, F.; et al. High-frequency oscillation in early acute respiratory distress syndrome. Engl. J. Med. 2013, 368, 795–805, doi:10.1056/NEJMoa1215554.
  10. Young, D.; Lamb, S.E.; Shah, S.; MacKenzie, I.; Tunnicliffe, W.; Lall, R.; Rowan, K.; Cuthbertson, B.H. High-frequency oscillation for acute respiratory distress syndrome. Engl. J. Med. 2013, 368, 806–813, doi:10.1056/NEJMoa1215716.
  11. Gu, X.L.; Wu, G.N.; Yao, Y.W.; Shi, D.H.; Song, Y. Is high-frequency oscillatory ventilation more effective and safer than conventional protective ventilation in adult acute respiratory distress syndrome patients? A meta-analysis of randomized controlled trials. Care 2014, 18, R111, doi:10.1186/cc13900.
  12. Maitra, S.; Bhattacharjee, S.; Khanna, P.; Baidya, D.K. High-frequency ventilation does not provide mortality benefit in comparison with conventional lung-protective ventilation in acute respiratory distress syndrome: A meta-analysis of the randomized controlled trials. Anesthesiology 2014, 122, 841–851, doi:10.1097/ALN.0000000000000306.
  13. de Jager, P.; Kamp, T.; Dijkstra, S.K.; Burgerhof, J.G.; Markhorst, D.G.; Curley, M.A.; Cheifetz, I.M.; Kneyber, M.C. Feasibility of an alternative, physiologic, individualized open-lung approach to high-frequency oscillatory ventilation in children. Intensive Care 2019, 9, 9, doi:10.1186/s13613-019-0492-0.
  14. de Jager, P.; Burgerhof, J.G.; Koopman, A.A.; Markhorst, D.G.; Kneyber, M.C. Physiologic responses to a staircase lung volume optimization maneuver in pediatric high-frequency oscillatory ventilation. Intensive Care 2020, 10, 153, doi:10.1186/s13613-020-00771-8.
  15. Liu, S.; Zhao, Z.; Tan, L.; Wang, L.; Möller, K.; Frerichs, I.; Yu, T.; Huang, Y.; Pan, C.; Yang, Y.; et al. Optimal mean airway pressure during high-frequency oscillatory ventilation in an experimental model of acute respiratory distress syndrome: EIT-based method. Intensive Care 2020, 10, 31, doi:10.1186/s13613-020-0647-z.
  16. Lista, G.; Bresesti, I.; Cavigioli, F.; Castoldi, F.; Lupo, E.; LoMauro, A.; Aliverti, A. Efficacy of lung volume optimization maneuver monitored by optoelectronic pletismography in the management of congenital diaphragmatic hernia. Med. Case Rep. 2017, 22, 133–136, doi:10.1016/j.rmcr.2017.07.013.
  17. Zannin, E.; Dellaca, R.L.; Dognini, G.; Marconi, L.; Perego, M.; Pillow, J.J.; Tagliabue, P.E.; Ventura, M.L. Effect of frequency on pressure cost of ventilation and gas exchange in newborns receiving high-frequency oscillatory ventilation. Res. 2017, 82, 994–999, doi:10.1038/pr.2017.151.
  18. Kneyber, M.C.; Markhorst, D.G. Do We Really Know How to Use High-Frequency Oscillatory Ventilation in Critically Ill Children? J. Respir. Crit. Care Med. 2016, 193, 1067–1068, doi:10.1164/rccm.201512-2418LE.
  19. Kneyber, M.C.; Markhorst, D.G. Any trial can (almost) kill a good technique. Intensive Care Med. 2016, 42, 1092–1093, doi:10.1007/s00134-016-4215-9.
  20. Dellacà, R.L.; Zannin, E.; Ventura, M.L.; Sancini, G.; Pedotti, A.; Tagliabue, P.; Miserocchi, G. Assessment of dynamic mechanical properties of the respiratory system during high-frequency oscillatory ventilation. Care Med. 2013, 41, 2502–2511, doi:10.1097/CCM.0b013e31828cf3ea.
  21. Casserly, B.; McCool, F.D.; Sethi, J.M.; Kawar, E.; Read, R.; Levy, M.M. A method for determining optimal mean airway pressure in high-frequency oscillatory ventilation. Lung 2013, 191, 69–76, doi:10.1007/s00408-012-9434-4.
  22. van Genderingen, H.R.; van Vught, J.A.; Jansen, J.R.; Duval, E.L.; Markhorst, D.G.; Versprille, A. Oxygenation index, an indicator of optimal distending pressure during high-frequency oscillatory ventilation? Intensive Care Med. 2002, 28, 1151–1156, doi:10.1007/s00134-002-1368-5.
  23. Goddon, S.; Fujino, Y.; Hromi, J.M.; Kacmarek, R.M. Optimal mean airway pressure during high-frequency oscillation: Predicted by the pressure-volume curve. Anesthesiology 2001, 94, 862–869.
  24. Habib, R.H.; Pyon, K.H.; Courtney, S.E. Optimal high-frequency oscillatory ventilation settings by nonlinear lung mechanics analysis. J. Respir. Crit. Care Med. 2002, 166, 950–953, doi:10.1164/rccm.200205-398OC.
  25. Klapsing, P.; Moerer, O.; Wende, C.; Herrmann, P.; Quintel, M.; Bleckmann, A.; Heuer, J.F. High-frequency oscillatory ventilation guided by transpulmonary pressure in acute respiratory syndrome: An experimental study in pigs. Care 2018, 22, 121, doi:10.1186/s13054-018-2028-7.
  26. Klapsing, P.; Moerer, O.; Wende, C.; Herrmann, P.; Quintel, M.; Bleckmann, A.; Heuer, J.F. Setting mean airway pressure during high-frequency oscillatory ventilation according to the static pressure-volume curve in surfactant-deficient lung injury: A computed tomography study. Anesthesiology 2003, 99, 1313–1322, doi:10.1097/00000542-200312000-00012.
  27. Tingay, D.G.; Mills, J.F.; Morley, C.J.; Pellicano, A.; Dargaville, P.A. Indicators of optimal lung volume during high-frequency oscillatory ventilation in infants. Care Med. 2013, 41, 237–244, doi:10.1097/CCM.0b013e31826a427a.
  28. Zannin, E.; Ventura, M.L.; Dellacà, R.L.; Natile, M.; Tagliabue, P.; Perkins, E.J.; Sourial, M.; Bhatia, R.; Dargaville, P.A.; Tingay, D.G. Optimal mean airway pressure during high-frequency oscillatory ventilation determined by measurement of respiratory system reactance. Res. 2014, 75, 493–499, doi:10.1038/pr.2013.251.
  29. Miedema, M.; de Jongh, F.H.; Frerichs, I.; van Veenendaal, M.B.; van Kaam, A.H. The effect of airway pressure and oscillation amplitude on ventilation in pre-term infants. Respir. J. 2012, 40, 479–484, doi:10.1183/09031936.00138311.
  30. Pillow, J.J. Tidal volume, recruitment and compliance in HFOV: Same principles, different frequency. Respir. J. 2012, 40, 291–293, doi:10.1183/09031936.00020012.
  31. Kung, S.C.; Hung, Y.L.; Chen, W.L.; Wang, C.M.; Chang, H.C.; Liu, W.L. Effects of Stepwise Lung Recruitment Maneuvers in Patients with Early Acute Respiratory Distress Syndrome: A Prospective, Randomized, Controlled Trial. Clin. Med. 2019, 8, 231, doi:10.3390/jcm8020231.
  32. Bates, J.H. The Role of Airway Shunt Elastance on the Compartmentalization of Respiratory System Impedance. Eng. Sci. Med. Diagn. Ther. 2019, 2, 110011–110018, doi:10.1115/1.4042308.
  33. Brashier, B.; Salvi, S. Measuring lung function using sound waves: Role of the forced oscillation technique and impulse oscillometry system. Breathe 2015, 11, 57–65, doi:10.1183/20734735.020514.
  34. Shimoda, T.; Obase, Y.; Nagasaka, Y.; Kishikawa, R.; Mukae, H.; Iwanaga, T. Peripheral bronchial obstruction evaluation in patients with asthma by lung sound analysis and impulse oscillometry. Int. 2017, 66, 132–138, doi:10.1016/j.alit.2016.06.008.
  35. Aronsson, D.; Hesselstrand, R.; Bozovic, G.; Wuttge, D.M.; Tufvesson, E. Airway resistance and reactance are affected in systemic sclerosis. Clin. Respir. J. 2015, 2, 28667, doi:10.3402/ecrj.v2.28667.
  36. Bhattarai, P.; Myers, S.; Chia, C.; Weber, H.C.; Young, S.; Williams, A.D.; Sohal, S.S. Clinical Application of Forced Oscillation Technique (FOT) in Early Detection of Airway Changes in Smokers. Clin. Med. 2020, 9, 2778, doi:10.3390/jcm9092778.
  37. Fessler, H.E.; Derdak, S.; Ferguson, N.D.; Hager, D.N.; Kacmarek, R.M.; Thompson, B.T.; Brower, R.G. A protocol for high-frequency oscillatory ventilation in adults: Results from a roundtable discussion. Care Med. 2007, 35, 1649–1654, doi:10.1097/01.CCM.0000269026.40739.2.
  38. Roubik, K. Measuring and evaluating system designed for high-frequency oscillatory ventilation monitoring. Tech. 2014, doi:10.1515/bmt-2014-5012.
  39. Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoustics 1967, 15, 70–73, doi:10.1109/TAU.1967.1161901.
  40. Michaelson, E.D.; Grassman, E.D.; Wendell, R.P. Pulmonary mechanics by spectral analysis of forced random noise. J. Clin. Invest. 1975, 56, 1210–1230, doi:10.1172/JCI108198.
  41. Rožánek, M.; Horáková, Z.; Čadek, O.; Kučera, M.; Roubík, K. Damping of the dynamic pressure amplitude in the ventilatory circuit during high-frequency oscillatory ventilation. Eng. Biomed. Tech. 2012, 57, 53–56, doi:10.1515/bmt-2012-4481.
  42. Laviola, M.; Rafl, J.; Rozanek, M.; Kudrna, P.; Roubik, K. Models of PaO2 response to the continuous distending pressure maneuver during high frequency oscillatory ventilation in healthy and ARDS lung model pigs. Lung Res. 2016, 42, 87–94, doi:10.3109/01902148.2016.1145307.
  43. Suter, P.M.; Fairley, H.B.; Isenberg, M.D. Optimum endexpiratory airway pressure in patients with acute pulmonary failure. Engl. J. Med. 1975, 292, 284–289, doi:10.1056/NEJM197502062920604.
  44. Dargaville, P.A.; Rimensberger, P.C.; Frerichs, I. Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Med. 2010, 36, 1953–1961, doi:10.1007/s00134-010-1995-1.
  45. Dellaca, R.L.; Veneroni, C. Trends in mechanical ventilation: Are we ventilating our patients in the best possible way? Breathe 2017, 13, 84–98, doi:10.1183/20734735.007817.
  46. Roubík, K.; Ráfl, J.; van Heerde, M.; Markhorst, D.G. Design and control of a demand flow system assuring spontaneous breathing of a patient connected to an HFO ventilator. IEEE Trans. Biomed. Eng. 2011, 58, 3225–3233, doi:10.1109/TBME.2011.2165541.
  47. van Heerde, M.; Roubik, K.; Kopelent, V.; Plötz, F.B.; Markhorst, D.G. Demand flow facilitates spontaneous breathing during high-frequency oscillatory ventilation in a pig model. Crit. Care Med. 2009, 37, 1068–1073, doi:10.1097/CCM.0b013e318196153b.